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ON NECESSARY AND SUFFICIENT CONDITIONS FOR THE COCN GECE

OF THE REWAL DESITY

by

Walter L. Smith (i)

1. Introduction.

If k(x) is any non-negative function in L(-s, +.), and if we

write k1(x) - k(x) and

kn(x) = f k*In' f (x-z) k (z) d z

for n = 2, 3, ..., then the function

A=fk(x)_7 a Ei * (x)
n=i

is defined almost everywhere (although it is possibly infinite for som,

or even almost all, x).

Suppose f(x) is the probability density functon of a random variable

X, the mean value of which, I - E X1, is strictly positive (it my hbave

the value -*.). The function A [f(x)_7 is caled the renewl density,

and its asymptotic behavior has been an object of study since the earliest

days of reneul theory. Interest vas centered upon establishing (or deny-

ing) that as x -- > +a..

A f- (X)7 -> 1 1

Prior to the important paper of Feller (1941) there appears to have been

some controversy concerning this asymptotic behavior. Feller provided

sufficient conditions under which the reneul density would converge to

(1) This research vas supported by the Office of Naval Research under
contract No. Nonr-8"(O9) for research In probability and statistics
at the University of North Carolina, Chapel Hill, N. C. Reproduc-
tion in whole or in part is permitted for any purposes of the
United States Government.
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the desired limit. These conditions have been modified and siiMlified

by T cklind (1948) and by Smith (1954, 1933). The simlest sufficient

conditions to date are those given by Smith (1955); these are: (1)

f(x)-->o as x -> +-o; (ii) f(x) e f, or some 8>0.

In the course of some work on the theory of dams we have recently

discovered that if

f(x) )J 1' Et, x > 0,
0

=0 , x<0,

then =1 and Af [(x)-7 -> 1, so that the renewl density

does converge to the appropriate limit. However, f(x) is in no class

L1+8 for B > 0. Thus the sufficient conditions of Smith (isg) are

not necessary. We refer to Smith (1960) for a discussion of this

example.

This paper is minly concerned with establishing that a certain

set of conditions on f(x) is both necessary and sufficient for the

asyitotic convergence of the renewl density. before we state this

main theorem, however, we must Introduce so notatior.

Let U(X) -p (o< x )be the HmeAlisid unit function; I.e., U(x)ml if z>0

and.U(x)=o If x<. For any 5>0 define c,(x) = f(x) U(x - 5),

and be(x) - f(x) U(x) - o5(x); than define a(z) - f(z) - b,(x) - a8(z).

Thus a(x) vanishes for all positive x, b,(x) vanishes outside the

interval (o, 8), and as(x) vanishes whenever x < B; for all x, however,

f(x) - a(x) + b,(x) + c,(x). Denote Fourier transforms thus



ce(€). f e . (x)dx e f i f(x) dx

We can now state.,

Theorem 1. If f(x) is the probability density function of a random,

variable X with a mean value p, " & X which is strictly positive

(though, pousibly,. Infinite), then in order that &[f(z)-7 -> -.

as x -> a, where p1  is to be interpreted as zero if pL -

it is necessary and sufficient that

() f(x)--> 0 as x-> +,

and, for sne 8 > 0,

(ii) A [b8 W-)7 -- > 0. as x->

(ill) ct (0) bolot-4; to sa clans I~j, whare p Lzy depend upon 8.

_urthermore, if .thos conditions hold for so 5 > 0, then e hold for

every b8>0 for thich

of f(z) dx < 1.

This is the first time that necessary and sufficient conditions for

the convergence of the renewl density bhave been established. It il be

seen that they are substantially less restrictive than the sufficient

conditions of Mth (195); for e3.nzple, no restraint is placed on the

behavior of f(x) for negtive x.

Condition (li) of Theorem 1 appears to 'beg the question' and does

not seem easy to verify in any particular case; however, the following

theorem enables one to recognize quickly a vide class of functions ihich

satisef this condition.
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Theorem 2. Supose that$ for some 8 > 0,

8
f b (x) dx < 1
0

and b(x) - wl(x) + w2 (x), vhere wl(x) and w2 (x) are non-negative

functions which vanish identically outside the interval. (0, 8) and are

such that

(), forsome p > 0;

(ii) ,2 (x) = o(x "1) for some M4 > 0;

then we my conclude that

A E%()-)7 -> 0, as x ->a.

Fro this theorem we shall deduce a simple corollary vhch states

that A [be(x)-7 .- > 0 as x a..> a if f(x) is monotone decreasing

in the Interval (0, 8).

The motivation behind the conditions of Theorem 1 can be appre-

ciated intuitively. Only singularities of f(x) in the I Interval

(0, .) should affect the behavior of & [f(x)_7 for very urse x.

Singularities, if any, of f(x) at the origin should reiin at the origin

for fkn(x), n > 1, and not be displaced to larger values of x. Thus,

for large values of x, A [f(x)_7 should not be affected by sliaglri-

ties of f(x) at the origin. Needless to say, the 'counter-example'

frum the theory of dams, hich ve quoted above, satisfies the new set

of conditions.

The question arises as to whether there exist probability density

functions which fail to satisfy any of the conditions of Theorem 1. We

shall show that indeed there are. In addition we shall show that if



condition (iii) of Theorem I is not satisfied then there exists no

large number y such that 4 [f(x)_7 is bounded for x > y . Con-

cerning condition (ii) of Theorem 1 ye shall prove

Theorem 3. If there is some Interval (a, P), 0 < a < A, vithin which

S/-f(x) 7 is b=nded then, for all suffictent,. sall 8 > O

%be(x)_7 -> 0 as x->.

Thus, then condition (11) of Theorem 1 fails to hold for any 8 > 0,

the renewl density is unbounded in every interval, however smal, to

the right of the origin. On the other band, a Corollary will show that

if 4 [b 8 (x)7 tends to zero as x -> u then it does so exonen-

tially rapidly.

Let ! be the class of density functions f(x) vhich satisfy the

conditions of Theorem 1. It is of scme interest to discover closure

properties of ' . In this connection we shall prove

Theorem 4. Let fl(x), f 2 (x) belong to ; let p, q be non-neg-

tive constants, p + q a 1, let g (x) be a bounded non-negtive function

such that

40 +so

f $ (z) f(x) dx > f fx $ (x) f,(x) dx > 0
-0 -al

Then the following proability density functions also belopg to

(1) OWx fi(X:/ f O(x) fl(x) dx}

(ii) p f1(x) + q f2(x)

-.0
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Finally we shall discuss one or tvo minor matters, such as the

behavior of a fr(x)_7 as x -> - , and the implications of a

recent paper by Feller and Orey (1961).

2. Prelimiries .

In all that follos f(x) vill alwys stand for the probability

density function of a random variable X with strictly positive (posWably

infinite) mean value. This assqion will be implicit even then not

explicitly invoked. Note that there is no restriction to strictly non-

negative random variables. We shall always denote g X by Il, vith

the understanding, sometimes tacit, that V "l is to be interpreted

as zero if 1 a a . Our arguments will involve several manipulations

of mltiple, especially double, series. We shall indulge in these manipu-

lations vithout coamnt. The justification wil always be the non-

negativity of the terms involved. Nearly every statement, relation, or

equation, In this paper is really omn true (or proven) for almost all x;

to avoid tiresome repetition, however, ve shall alvays omit mention of

this 'almost everyhere' qualification.

We sball be primrily concerned vith non-negative functions in

L,(-M, +,) and it Is convenient to give this class the nane P . We

shallI always write ia(x) for the rene-wal density function A [fr(x)-7;

m, n, r, s and N vill denote Integers (frequently they are &=y

variables in suemation); subject to the preceding exceptions, however,

ve use lower case Rovan letters for non-negative functions of the varia-

ble x, and usually these functions are in P .

If a and b are non-negative functions then the convolution
+00

f a(x -z)b (z) d z
-0
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ill always be defined (though possibly infinite). As such convolutions

will occur very often in what follows we shall denote then sinply as

afb or a*b(x), whichever is the more convenient in a given context.

Notice that afb b*a, and that, thenever the Fourier transforms exist,

(a*b)t u at bt

If k is any noc-negative function we shall vrite k *  for k'k

and, more generaly, or .*(nTu) j as0 in the

Introduction, if ve define k*L k then we slall vrite

n1nA fV7a E k
n-1

It is clear that the function a fk7 is defined almost everyvhere, since

all the convolutions k! are non-negative.

We shall also vrit. Ilkil for the integral.
4"
f k(x) d .

-u

3. The basic leins. In this section we prove the basic lemms on which

our main argwmnt depends.

Too= .l.(i) If a and b are both In F then aft IsIn) and

Iaeb I - I, II Nb II
(ii) If a isoin? and liIall < 1 then afi7 is inf'

and lIar!711 - Ila 11 /(l- Il 11).

Proof. (i) The fact that aft is non-negative is trilial; and the

fact that aft is in L is a fam" r property of the convolution of

two r-functions. Ttat 11a*b a b 11 ambeshownbydirect

integration.
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(ii) Since a is non-negative it is trivial that a is like-

ise, for n = 2, 3p, ... , and hence that A A7 is non-negative; more-

over, this non-negativity justifies term-by-term integration, thus

11 A =rA71 =  11 &"2 11 * I
n-i

But (i) demostrates that 11a~1 - jail n zisoa 1u

follow upon suning a geometric series.

We nov define a subclass 2) of P which vi play an Important

role in our arguments. The function a(x) e if and onl if

a(x) 4 P and a(x) -> 0 as x -_ . . Concerning this class

we have the following lm which shows that 03 is closed wuner

additions, convolutions, and multiplication by non-negative constants.

Lam 2. (i) If k e 0 and X. is any non-negative number then

(il) If k and k2 are both members of 33 then both

k, + .k2  and k1 *k2 are es of 1) •

Proof. The only non-trivial part of this Im is the fact that

k1 * k2  e'" if bot e and k 2 ) . To Prove this oint

ve observe first that kI * k 2 G by lam 1 (i). Furthermore, given

eny e > 0, we can find a large xo(q) such that both k1(x) < e

and k 2 (z) <a for all x > xo . If, therefore, we choose x > 2x o

it follows that

x/2 +a

k *k2 (x) - f + f k(x- z) c 2 (z) dz

< 11 k l +e II 2j II
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Ple. n3y, this Ilies tbat k1* k 2(x) '.> 0 as x > sand the

Ia is proved.

The mutilations e.(x), b,(x), Q,(X) of f(x) have been defined

in our Introduction. lie next~ prove a lenna involving b,8 (x).

Lem . IfA [b8,7 e 2J ad X. is any real non-negative nuber

then there lis a b* > 0 such that A[\% bW7 C 00)

Proof. since A~ [bb7 e 00 there nuat be an z (e) such that

A Ebb(xL-7 < a for all x > x0 in particular, this Implies that

bi < for all x >x. and all n. Bat

X/2 x

x

*2/ b%' (x- Z) b (z) d z

22

We choose 8* < 8 such that X2 b51; < 1j . Then, necessarily,

A [bW7 <5 A [ba.7 and hence A fbW7 a n also. Thus the pre-

ceding argummt on b. applies equally weon to b., . Therefore, for

all x > x(e)

x2n *2n i

and so

*2n
n-i n b8* ()
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Siilarly, one can show that

'0 ?2n-1 b * 2l) (x) < £
nul

for all sufficiently large x, and a combination of the last tVo In-

equalities proves the lemm.

With the aid of Lem 3 we are able to prove the following I

which we shall use directly in the proof of our mi theorem.

Leam 4. If A£"I5..7 e 31 then there is a &* >0 such that

A fa+b W7 c 3 .•

Proof. Note that 11 a < 1 so that we my choose a X such that

o< X< 1 1 jj all Then, by LmM 3:,v canfinda *,

0 <" < 5, such that

nali

belongs to a b"-7, of course, also belongs to 1
For each n > 0 let us define the non-negative fmuntion

u(x) - E (n,,) (a + bb)

Evidently,

lUnI " -  (nm) (II a + b e*II) II mll

Na + I be*I
(1-lI aI )l

and so un(x) belongs to . Furthermore, since a(x) vanishes

identically for x > 0, it is apparent from the definition of Un(X)
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that u,(x) vanishes identically for x > b*.

Next define

u(x) = U u(x)
n=1

where X is the nubor chosen above. Plainly u(x) is non-negative and

vanishes identically for x > 8* Moreover,

Go ( 11 l + 11 be* fl)
n-1 (i- a I I) i

andso, by our choice of X,. ug Ll, andhence u e Wehave

therefore shovn that both A f_-[ bb,7 and u belong to 13 and my

appeal to Lez 2 (11) to infer that u* A f-l b.7 also belongs to
Buto

0 E (0 un )- b$4 ii A [7b.l b,~7,
n-i

since the sumtion in this Inequality Involves only the "diagonal" terms

that &rise In the calculation of u * A _/. 1 bw7=y Thus .44 u * On
rin b *

and, hence$ u0 + E un * b,* belong to * m wver,

U + * E (a+b * a + E ,*

n o n mi *M E )(&+b 0*  . *b *
m-o n-o

- E (r7) (a + be,) * a * b f
k-o r+-ok

E (a + b)*(T )
k-o

a fa+bs.7



22

This proves the lama. We note, however, that the fi nl algebraic steps

could be considerably simplified if a and b were mnipulated as

thout they were real numbers, instead of functions foming convolutions.

It is necessary, nevertheless, to deonstrate that the desired result can

be achieved by legitimate operations on functions, and not by purely

"esymbole" oper tons.

I -.. 02Z 1- f 1(91) is bounded in anelahborhoodof 0.

Proof. It is easy to see that

F ft() >(1-co0X f(x) dx,

and, since the Integrand on the right of this inequality is non-negative,

we hbave that for any large positive 7,:I -+cg
__-____ >lz - o x f(x) dx

But, given any ull a > 0 ve can find a 5(e) such that

(1coosY)> 1 (_ ) Y2  for af Jy <B. Henc,If ve choose

Iol< "/7' ,

> (- )fx (x) dx.
-7

By choosing 7 large enough e can always make

f x2 f(x) dx > 0 ,

-7

and so the leIa is proved.

As a matter of fact, we only strictly need in the sequel the weaker

result that Q2 / 11 - f t (9) 1 is integrable in a neighborhood of the
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origin; this vesker result can be inferred from the genael Lemm 8

of Smith (1960 b). A desire for completeness, and the simplicity of the

above proof, suggest we give it here.

Lema 6.

1 -
i- ft(Q)

is a bounded function of •

Proof. By a well-knovn property of the earacteristic function of an

absolutely continuous distribution given any g > 0 there is an

(,) >o such that ft (0) < -q fora a3. 1Q1 e

Hence, for all I ,,

1 -)1< 1

1 f t (9) 1I --. ' o

But, for jf < a, It is easily shown that

in (12)0 2

Thus the lema follows from an appeal to lmn = -

Tm 7 If the function k(x) belng to and its tiafom t(jP

belongs to L them

k * h (x) -> kJii

as x I-> ( is defined to mean zero then +

Proof. We my suppose 1 k > 0 since otherwise the Ieml is trivial.

Since kt(9) a L, e have (Theorem 8 of Bochner and Chandxasekbaran

(194&9)) that
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k (x) - -eioxkt () dO

Thus Jk (x) I is bounded. by (2g)-1 11 kt 11, and the Riemann-Lebegae

lemu shows that k(x) -> 0 as xI-..

Let us next write

N *n
uN(x) E k,* f

nal

Then, because all terms Involved are non-negative. we can introduce the

limit
U (x) - im, uN (X) - k * h(x)

Furthermorej,

N
uN E kt (ft)n

and so it i plain tbat + belongs to and that we my wrIte

U,(x) -... J- ioxkt(0) ft(o) 1 (f(Q)) d(1- rt() 5 ,

Next define

X+/2

vINx) - j r ,z z

and note that, by the monotone convergence theorem, we can write

p4+1/2
vlx) : Urn vj(x) u (z) dz.

x-1/2

Routine calculation show that

v~t(e . sin (9le)

7(0/) Nt (9)

so that, since (sin (0/2))/(0/2) is a bonded function of G, VN (0)



to also in L1,. like UK (o) . Thus

Sf e-"' k+(O)f"Mo / .(ft(0)),11 d
wN(X) - v (x) 1 . 0L f eQ(k)(1(

IfVe now appeal to 1 6 and use the fact that jft(Q)j<5 1

it is clearly seem that the intepad on the right is dminated by some

multiple of the integrable function jkt(G) 1. Moreover, I f'(Q) I < 1

for aflQ 0 so thatft )I ->0 as N-> for all 9 0

Thus ve can appeal to Lebespge's theorem on daninated convergence to

deduce that

u W - V.(x) f ef ' x )(0/2) d ( (.

However, the integmnd on the rUght of this last equation is also

dominated by sons multiple of 1k+(Q) I and so belong to Ll. Thus ve

can effect a further appeal to the Riau-Lebeague I to infer that

CO - (x) -> 0

as Ixl -- > U . Moreover, since u m k*h , it follows that,. as

. I . 1 . X+/2

k*h x) ,f/k*h(z) di --> 0.
x./2

The lema vill therefore be proved if ve can show that. as x -> w,

Iflk2k*h (z) dz k

To this end, let us put

x+1/2
g(x) f h (z) dz

x-i/2



Then g(x) can be interpreted as the expected number of renewls to

occur in the interval (x - 1/2 , x + 1/2), and ve can deduce from

renewal theory that Z(x) is bounded and that, by B lackwell's theorem,

g(x) -> as x-> (Backwell (i953), Smith (196 b)). We

can then appeal to a very easily proved le~ma of Smith (1934, Lemm 1) to

infer that k *g (z) -w> 4171 11kf as z- But Ttroutine

cooputation viUl show that

k* (x) -f k*h(z) dz
X-1/2

and this ccmpletes the proof.

Lem 8. If u and v are both ambers of and if ve vrite

ka v + v*Af1.7,

f k + A u7,

then, for any integer N '

A u+ X7- f + f~k + f~ 2+ * + fi(*k(N ) + k* a[u +V7.

Proof. Like part of the proof of La 4 this leim is easily seen if

ve treat u, v, f, k as reals; but It Is agin, of course, desirable to

establish the result by 3ustifiAble operations.

We note first that

f+k*a[uv,7 - v+ E ,,, + E v*u + E v*(u+v)"
nai n-i nal

+ E E v* u* (u-v)N
mrl n=l

=E un + E. - * u - (U+V)
nul m-o n=o

n ui + " E (n)
n-i n=o n-o r~o r
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For any integers a, t a > O p > 1, the teo= u U4vf can arise in

the triple sumation on the right in (1 + a) wys, corresponding to

r = 0, 1, 2s ... s a. The total coefficient of utv f- turns out to be

( -)+ )+ ... + (+a- 1)

and a Simle inauctive argment proves this to equal (a+ • Thus

(+ k*A fpv_7m E ~ + E E a UC
n-i ~O Pul

- E nu**v*P

- (u+v) *

nul

- +u"v7
We have thus proved that the Im holds for N 1 1, and the general

result follo,. by repeated applications of the special result. For
exazIle,

A fu + v.7 , f + k * (f + k * AEfu + K7)

+ k * ( + k * .['u + v7;

and so on.

LeM 9. If h(x) -> 11  as x -. as and if k(x) is any fuction

in Pthen 1A Inf k h (x) - , k •.



Proof. Choose a large positive nlurber y and define

k (x) . k (x) if x < Y,,

- 0 otherwise.

Since k(x) belongs to Lh ve can find y large enough so that

I1kl > Ilkl- e j foranyprscribed e > 0.

Furthermore, since h(x) -> V 1  as x ---> , w can also find

>y suchthat jh(x) - 1 <a for all x >X

We then observe that for all x > 2%p

lk7*h(x) 1 .1 k11k71l 1 1 k 7 (z) Ih(x-z) - Ll li z < a Ilki •

Thus k7 *h(x) -- - 1 Is l -> .a xBt k(x) > k,(x)

so that
lim in k * h(x) _>%z(11k11 -41)
x --- > a

The lems is proved by letting e --- > 0

1, Proof of Theorem 1. We deal with the necessity part first.

The proof that condition (1) met necessarily hold bas been attn:L-

buted to Feller (19411), but we have recently noticed that Feller's proof

needs to asm=e the boundedness of h(x)3 most of our difficulties In the

present Investigtion arise precisely because we my not assimn h(x)

to be bounded. However, the necessity of (i) is easy to prove by an

appeal to Lame 9. We observe that h(x) satisfies the familiar Intepal

equation

h(x) . f(x) + f * h(x)

and so, if h(x) -> as x s->, it follows that
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1±12 sup f(x) M 1- - urn mf f *h(x)
X -> a x ->G

An appeal to Lema 9 then shows that we must have f(x) -. > 0.

Next, to prove the necessity of (ii), choose any 5 > 0 such

that 1 be fl < 1. We appeal to Len 8, making in it the substitutions

Na u-b v = a + 05 . This yields

,.l =7f v + v A -[7+ f3!7+ k* [7,

-here
k = v + v*A/-7,

= (a + c8) + (a + c,) * A =-b.7.

The functions u(x) and v(x), as presently defined, are clearly in the

class P . Thus, by an appeal to Lemm, 1 it follows that k(x) is also

in 9 and that

Ilkil = ~IaII + 11011 ll + Ilbell
1 - ,b 8oi

= 1,)

since IIal + lbbll + llcell - h IIII - 1

We are at the monent assuming that h(x) -> 41= 1 as x->u,

and so it follows from the properties just deduced for k(x) and from

Le= 9 that

1±1 - inf k*Af 91-1
x ->as

Therefore, fro ( 4.1) we infer that

lim sup V(x) + v* afu(x)7 + afu(x)_7 < 0
x -> 0
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The non-negtivity of all the terms involved in the last formla

allows the deduction that &u7M A [bb7 -> 0 as x -> a, and

thereby proves the necessity of (ii).

To conclude the necessity part of the proof ye deal with (iii). We

begin by observing that if h(x) -> 1 as x -> a then there

mut be same y such that h(x) < 1 for all x > 7- However, it

is trivial that h(x) > c.(x) for all 5 > 0 and all n. In parti-

cular, this last Inequality will hold if we take n = m, say, iare

m is the next integer greater than y/b. Thus c. (x) is bounded for

all x > 7. But it is not difficult to see that, because of our choice

of M, % (x) vanishes identically for x <7. Thus c. (x) is bounded

everywhere and, being already known to be a member of L1 , it must also

be a member of L2 . By the reciprocity of L Fourier transform it

then follows that (c + (0))m , the Fourier transform of c~'(z, is in

Y this shows that ct,((;) is a mbrof Lp with p - 2. The

necessity of (Iii) is thus established.

Let us now assume that, for se 8 > 0, the conditions (i), (1i),

and (iii) hold, and prove them sufficient to make h(x) -> Il1 as

x > .

uppose frs that 11b511 - . Then b f and ve s efro (ii)

that h(x) - A b (x)_7 -> 0 as x ->.. it follows easily from

this result that if k(x) i any bounded function in? then k * h(x)-> 0

as x -> u . Comarison with Lao 7 then shows that we ust have

p, - a; but this is Impossible, since f vanishes outside the interval

(o, ) Thus it mxst be that 11ba11 < 1.

Next we shall show that, with no loss of generality, it my be

supposed that (a + b,) e 3D and that Ic.1i > 0. For, since it Is
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given that A ./be(x7 -- > 0 as -> , and since ve must have

jlb8 l < <1, it Is an easy matter to show that A [b8_7 a0 . Tben,

by 1m 4., we can choose 8* > 0 such that A [a + b8*-7 a ,0 and

this 8* can be chosen =all enough to make Ile,* 11 > 0. Now the

necessity arguments we applied above to A [f7 work equally well upon

,& [b 7, since we are assuming a, [b(x)7 tends to a limit as

x -- > a , and they allo us to infer that (b8 - b5*)4 belongs to some

class Lq • But we are given in condition (Ii) that 08 belongs to

I . In view of the fat that both (b5 - b5*) and 08a are necessarily

bounded functions of 0 it is evident that they both belong to L r, vhere

r w Max (p$ q). Thus, by a familiar application of Minkowski's inequality,

Ct ct + (be - b t is also In Lr (we my assune r>l1).

Thu the conditions (ii) and (iii) hold with 8 replaced by 8*, and,

in addition vehave that (a + b8.) aT and that I1%1I > 0. This

completes out Justification of the claim made at the start of this paragraph.

We shall rake use in our argument of the functional identity proved

in ireu 8. In this lepta we take N as any integer greater than p

and let u- a + b8  and v a c8 . Then, in the notation of Imn 8,

(4.2) k-c + a5 * ' a+ .b67

and it Is easy to deftce from Lem 1 that k is in P . Moreover,

as N -> u, the function
M

c. + E 08* (a+b5)*n

n-a!

increases to the Li. limit-function k; thus it Is a simple matter to

justlfy the follorIng tezn-by-tenm calculation of k:

kt - T E c at+ bt )8 nul 8
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I.(at + bt)

Therefore,. If we use the fact that I++ bt < a +

11b5 - i-II II < l, ve candduce that

1k J < 1 - iI l(all + 1bB11) B%

< I " 1/11c B 1 •

But I < 1I811 so that it is obvious nor that jkt I belongs

to L and is bounded by unity. Th, Ik+ I' belongs to L., and we

can appeal to Leam 7 to infer that, as x -w> ,

(4.3) k *h(x)> %-l Ilk IIb

Iowever, it can be shown by using 1am 1, that

II k U - II { U + Ila + b 1 ,

1 - Ia -b11

so that (4.3) can actually be written more u nply as

(41.4) kfN * h (x) -- > 14"  .

Let us return to (4.2). We have shown that A fa + ba.7 msy be

assumed in f)and condition (1) show that c8 aIs in .1 Thus an

appeal to Luom 2 proves k a e . Eloying further notation from

La B w have =k + a a + b%.7 Isalso a mber of 7 .

Thus byeImm2, (+ f*k + f * k + ... + fk*(N-1) belongs

to 13 . But Tom 8 shom that

h(z) . f(x) + f * k(x) + ... + f * k*("-) (x) + k*N * h(x)

so the theorem is proved by an appeal to (4.4).



~.Proof of Theorem 2. Since t()1< lv1(x) I < 1 ve can suppose

P>2. Choose 8*> 0 so that
8*1

0

and then define

1'2(x) ' v2(x) if x < 0*

= 0 otherwise ;

ix = b,(x) - 1'2(x)

- v(x) + (v 2 (x) - ; 2 (x))

It is apparent from the hypothesis that v2(x) - V2 (x) is a bounded

Integrable function, and therefore it belongs to L2 . Thus its transform,

V t(0) i it(Q), also belongs to ad ic

jv~ (Q -~o) < 1V2V11<1,it follow that 2(0) - 'it(9)

belongs to (recall that p > 2). By Minkovski's ineqAlity the sum of

tvo L. - functions Is another I.function (for p > 1). Thus

i,(x) - v1(z) + (v2(x) - i 2 (x)) is a non-negative funton vehose Yourier

trnsform is in LP. In other vords, vith no lose of generality, we my

suppose it possible to vrite b (x) - v.(x) + v2(x) wm in addition to

the properties required of v1(x) and v,(x) In the enunciation of Theorem

2 ve also have 11v211 5 - .

We shall next prove the Intermediate result that, for some constant

7o
( ).*1 (X) _< 7n.

for all n and all x > 0.
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We my, by hypothosis, choose a so that w2(x) < x M for

all x > 0. Let us make the inductive hypothesis that (5.1) in true

for n l, 2) ... m. Then

(Z) - Y +(x - )w (z) .z

0x2

0 0

7; i1 , , 1211 +
2 ?(x/2)~ 1 (x/2)

Evidently, by TLa 1, Iv ll - ill and we have shown it
Possible to supose with no 1os of generality that I1V211 < 2"(M2)

Thu

w(2 (x) < 0 .. + 7

and, since W + 2m- M> m+ 1 for all n >1, It follows that

2 (x) <

so that the inductive hypothesis is continued. Since this hypothesis is
true for m = 1, the validity of (5.1) is thereby established for all m.

Hence,

A v2(x)_7 < Y
nml 2-1



A so A v2(x)_7 ->0 as x -> -s

Let us next choose an Integer N > p and appeal to Lem 8 apini,

this time with the substitutions u av 2 and v = v 1 . Then k = v 1

+ V1 *A& v 27 and so, in view of the result just proved, k 4 1)

Thence it follo3a that f- k + A [v2_7 also belongs to . Thus., by

Lea 2,

(5-2) f (x) + f * k(x) + ... + kf * k*(N' ) (x) -> 0,

as x -> . Furthermore,, kN** & [v + v27 is an L function

whose Fourier transform can be shown to be dam'nted by

I * IN 1 + 1v1 Ni + 1bl
1 1 -lIVw211 1 - 11b51l

This Fourier transform must therefore belong o L, because of our asump-

tion about vt" . We saw at the beginning of the proof of 1e 7 that

a function whose Fourier transform Is in h must be bounded and mist

tend to zero as x ->..> . Thus k*A v(X) + v 2(x)7 -> 0

as x--> e ; this fact, coupled with (5.2) and Le 8, is

enough to show that

a [b 8 (x)-7 a a~ [v(x) + v2 (xl7 -> 0 as x -> co

The 1w is therefore proven.

Corollary 2.1. If, for some 5 > 0 for which 11b511 < 1, the function

f(x) Is mootone decreasing in (0,) then a fb.7 a

Proof. If f(x) is monotone decreasing in (0,8) then we observe that

2n-1

E f < f(x) dx
n.J. 2n 2n nal /2
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n f f (x) d x ,

0

since f(x) e Ll. Thus, for scme >O0 and all n > 1, f(8/22) <

2~' ylb Therefore if x is arty number in (0,.b),, and ve choose the in-

teger m so that 8 /2l2l < x < 5/2P, then f(x)

y1* /8 < 27/x. Hence f(x) - 0 (i 1 ) In (0,8) and the

corollary followe from Theorem 2.

Notice that if f(x) is monotone increasing in (0,8) then f(x)

zmst be bounded in (0,.8*) for oxy 8* < 8, and it then followe at

once from Theorem 2 that a Ebb*(xL-7 > 0 as x -> a

6. Bome eles. It Is of Interest to consider briefly some cases In

which certain of the conditions of Theorem 1 fall to hold.

Suppose that t(x) does not tend to zero an x -> as.Then,

for som fixed e > 0 and all large y, the set of x-points

{x Ix > 7 , f(x) > ha bs aiways strictly positive measure.- Since

f(x) belongs to Lh ve mast conclude that the gph of the I'tail'

Of f(X) which trail 40 must contain an Infinite sequence of

' spikes'I which grow thinner and thinner as vs g0 towards + a, but

which are always of a height greater thman e.Te density function

h(x) will &ao exhibit these occasional thin 'spikes'I as x --.

if f(x) does not satisfy (iii) (we skip (ii) for the =ment)

then vs see.. from the proof of the necessity7 of (iii),. that there Is

no large y' such that h(x) < y for all x> y . For, if there vere

such a 7 then a very slight variant of that necessity argument would
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show that (iii) is satisfied. Thus, when (iII) is unsatisfied the reneul

density is unbounded for all large positive x. An example due to

Kolmogorov and Gnedenko (19%., p. 223) and used by the In another

connection provides us with an example of a density which fails to

satisfy (iii). They show that if we define a frequency ~nEction

g(x) 1 for jxj <
2jxjlog2 Ixt

0 otherwise ,

then there is, for every n > 1, a constant cn > 0 such that

g (x) > fn

Ix log n+l ') IXI I

for all x in a neighborhood of the origin. Thus gt(0) can be in

no class L for otherwise gn(x) would be bouded for all n > p,

hich Is not the case. Thus e can take f(x) - g(x - 1), say, for

our exule of a density vhich does not satisfy (III).

Let us now assume, temorarily, that Theorem 3 has been proved, and

turn our attention to constructing a probability density function 1hich

does not satisfy condition (ii) of Theorem 1. For any integer n we

can choose i such that

1 1
< <1

Wn - 2n2

Then the function

g(x)= x"  for 0 < x < ,

M 0 otherwise ,
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Is in 9 and has a Fourier transform gt(Q). Pirtheroe It follow

from Titclmrh (918, p. 172) that there ls a constant y such that

ig (0)1 Ow I Qjl as I1 > . Tbus it appers tbat g (o)

is In L,2' but In no class Lr when r is an integer < 2n2 - 1.

For n l, 2, ... ,p let f n(z) be afunction of~ i ubose Integral

is 2, ich vanishes outside the interval (=l-_ n-3, n--,

ar d hose Foier transfom is in L 2 but In no class Lr  when r

is an Integer :5 2M12 . 1. such a function ,x)can obviousl~y be

constructed by a suitable shift and scale cbanges on the emple g(x)

just discussed.

Define
f(x) . L fn (x)"

Then f(x) is evidently a probability density function, and It is not

difficult to see that f(z) satisfies conditions (i) and (iii) of

Theorem 1 (the ltter condition for every 5 > 0 ). Bowver, supose

ve consider any small interval (a, p), 0 < a < 1. We can choose large

integers r and n such that

r T <  ,
a , -(A - a) (a)i+ 1 ( -a) < r - , p-)
4 n 4

Then the function t n (x) vanishes outside the interval

r Or r +
U~~ nr-

vhich lies entirely withIn (a, p). If f*r (x) wzve bounded then its

transfomvould be n L2 and so fnf vould be In L2r . But r < n2

and so Ve z y conclude that fnr() is not bounded in (a,1 ). But It

is clear that h (x) E &ff(x)-7 >f'(x). Thus the renewl density
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h(x) is not bowmded in any interval. Since r(x) satisfies conditions

(1) and (iii) of Theorem 1 it appears that condition (ii) rmat fail to

be satisfied.

7. Proof of Theorem 3 . For any n > 1

If we suppose x > a + 8 then, in order that the integrand in (7.1) be

non-zero, there must be an integer m such that (if we define s o a 0),

zM-1 <a and a_<Z m <a+ 8. Therefore, for x >a+ 8,

b.(x) - f .... bs(zl) ... - dn. 1
-Ia< zM < a+ 5

Zm-l< a

U-1i
n-i j 8 Vx 'n- i1

n-i + 5 -i

-mm

(7.2) E f b (z) bn (x -z) d-z

For this proof lot us vrite a fb 8 (zL-7 more simply as h8 (z).

Then ve can conclude from (7.2) that for x a + 8

UU

h.(x) - E b. (x)
n"2

< 1: Eb!' (z bI'(ngm) (x - z) dz

nu2 bul8  () 8

a+

a
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No suppose we are givon that h(x) < 7 in (Le). TAt us choose

8 < (0-C). Then (7.3) proves that

(7.4) b,(x) 5 7 (x -z) d

for all x > a + 8. Bat it is well-known in renewal theory ( and a fact

already utilized In the proof of Lumu 7) that

x+8

f h(z) dz

x

is a bounded function of x. Thus, since hs(x) .< h(x), it follows

from (7.I4) that h8 (x) is bounded for all x > ax + 8.

However, h8 (x) satisfies the Integral equation h,(x) - b,(x)

+ b * (x), and so, for x > 8 we have

N(x) .f h (x- -z) b(z) d
0

Thu, if we ase y >> ax + 8, so that N(x) Is bounded in the

domin of our discussion,

SUP (x) .5 11b81ll Ow 1(x)
y + 8<x<y+ 28 y <y + 28

If we choose 8 > 0 sall enough to make 1 b11 < 1 then It Is clear that

the last inequality Illies that

AT ~ 1(1) .5 j1boll sUY he(x)

y+ 5 < x<y + 2y ¥<x<y + 8

and hence that h(x) .- > 0 as x -> + ao, at an exponential rate.

This proves the theorem.

We can thus conclude that if there is no 5 > 0 such that

[bb(x)7 --. > 0 then there is no interval to the right of the origin



within which h(x) is bounded.

We have incidentally proved:

Corollary 3.1. If A [b,(x)7 -> 0 as x .- > a. then there Is ac e

,1 > o such tats as x -> -,

As a ratter of fact one can show that n - log (l/11b 811); we leave this

point as an exercise for the interested reader.

8. Proof of Theorem 4. (i) Let us write

?(x) - 0(x) f(x)/I0(x) r(x)ll ,
and 1g, S. for the mutilations of " corresponding to the mutilations

a, b., c. of f. Obviously T(x)--> 0 as x--> a if f(x) -- > 0.

Further, if we write

*sup

II0(x)f(x)ll
it is clear that rc < X I jct I and therefore Z+belongs to any

class L. of which ct is a meraber. Finally we notice that
8

A f 158()_7: A f% b8(x)_7 and so, by 1e~m 3,1 A f ' 58(x7 -> 0
as x -> c, for all small 8, provided a -bb(x)_7 -> 0 for acme

B. This proves part (1) of Theorem 4.

(ii) Here we write ?(x) - pj(z) + qf2 (x) and ecaploy similar no-

tation to that just adopted in (i). Plainly Y(x) -> 0 as x )

if both fl(x)->0 and f(x) -> 0. If c18 , Lp and c ' a L

then it Is easy to show 4t L, where r a Max (ppq,*2). Finallyr
we note that

A S,7 E E IprqS *r *
n-1 r+sn r l5
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< E E b * b2

-nl r+sn 12

- A [bl.7 * A [b 287.

But, if A [b 1 5=7 arid A -b2 &_=7 belong to 710 then, by Lesa 2,

A fb,.7 & A Eb 2 .7 belons to 13 , and hence A [ 1 (x)_7 -> 0

as x .> w. This proves (1i).

(iji) For this part ve vrite fl * f2. If both f, and f2

belonb to ) then, by Lem 2, I belongs to ) . If a L
18 pY

and c t g L then they both belong to Lr, say, where r = mrx(p,q,2).

Thus c f + c t fl* also belongs to Lr and there IN therefore an

integer m, say, such that (clB * f2 + c28 * f1 ) is a bounded function.

But it is clear that 'E,,< cl5 * f2 c25 * fl, so we infer that c.,

is also a bounded function. Thus i* belongs to L2, which implies that

C8 .* belongs to I . Finally we must show that, for sm 5 > 0,

A fb 8 (x)7 -> 0 as x ->-. Denote ( x () + 1 ())*2( by f(x),
A

and denote mutilations of f(x) in an obvious way. Then it is clear

that f f(x) + 1 f2 x beogst a by part (i) of this proof.

Thus A [ 1 fl(x) + f2(x)_7 is bounded for all large X. But it is

not difficult to see that A [ (x)7 < A [ f1(x) + t2 (x)7

for all x. Thus A (4)7 is bounded for all large x and so by
A A 1 *2

Theorem, A fb(x)_7.> 0 as x ->so. However, f a f +
1 1f is A

* f + f , so that § (x)x), andwehave
21 f2 +42 2 8 -8

fj 1 (-7 > o as x ->... le can now appeal to Lac= 3

to infer that A [ 15()7 -> 0 as x -> w for all sufficiently

small 8. This proves the theorem.



9. Concluding observations. Snith (1955) discussed also the behavior

of h(x) as x -. 4o - . This is equivalent to supposing p < O

instead of g, >0 and still letting x - > + a. The omV place in

our arguments where we have used that p, > 0 is In the proof of Theorem

1, where we wnted to conclude that if

x+1/2

g(x) f h (z) d z

X-/2

then g(x) as x ->+ o . It is an easy consequence of

renewial theory that if we were to have Ll < 0 then we would have

g(x) -> 0 as x -> + -. The rest of the proof of Theorem 1 would

hold without change and allow us to conclude that if g1 < 0 then con.

ditions (), (ili) and (Iii) of that theorem are necessary and sufficient

to have h(x)-->0 as x->+o.

Feller and Orey (1961) have recently shon that g(x) is unifoily

bounded and S(x) -> 0 as x -> + a for certain situations in whlh

& X cannot be defined. It should be clear that we can use our re-

sults here also to conclude that for densities f(x) associated with

distributions of the kind envisaged by Feller and Orey, the conditions

we give are still necessary and sufficient for the convergence of the

renewl density.

In conclusion we make the following observation. If 7(x) is the

distribution function associated with the probability density f(x) then

we have been assming, of course, that 7(x) is absolutely continuous.
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However, It is possible to prove our theoremu assuning that F(x) is

absolutely continuous only over the open interval (0, co). We can allow

7(x) to be singulAr over (-ap, 27. Admittedly the reneval density func-

tion is no longer defined for negative x, but this need not trouble us.

We are only concerned with h(x) for positive x, and here h(x) re-

maine defined. Perusal of our arguments will show that the only wd4Ccaitiofl

needed is to change the hl-function a(x) into a certain monotone non-

decreasing function A(x), may, and to change all couvolutions with a(x)

into Stieltjes convolutions with AWx.
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